COLD FORGE STEEL SHOT & GRIT

A fast cleaning, low cost, durable media for all blast cleaning applications

Manufactured under a unique and proprietary process, Winoa Cold Forge Steel Shot & Grit is a great alternative, all-around long lasting blasting media. With a typical average hardness of 44 HRC, and a formed steel microstructure contributing to its strength and fracture resistance, our Cold Forge Steel Media may be your best abrasive option for all your blast cleaning applications.

USERS BENEFITS

#1 Low Cost

Due to the in-house and proprietary manufacturing process, which does not require the steel to be cast, the manufacturing cost is thus reduced, saving customers money.

#2 Efficiency

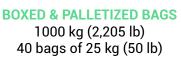
Higher specific density of 7.8g/cc, which increases impact energy and reduces cleaning cycle time.

#3 Certified by Winoa

Benefit from the quality guarantee of the largest manufacturer of steel abrasives in the world, as well as non-equivalent technical and commercial support on the market.

MARKETS AND APPLICATIONS

Foundries



4,000 lb

DRUM 2,000 lb

SPECIFICATIONS

Family	SN Shot	GN Grit						
Shape	Semi Round	Angular Shape						
Shape in operation	Round	Angular						
Chemical composition	C 0.01 - 3.0% Mn 0.10 - 2.0% Si 0.2 - 3.0% S 0.1% max P 0.1% max Fe Balance by subtraction							
Hardness	Typical: 44HRC 40-51 HRC (544-613 HV)							
Microstructure	Formed steel micro-structure from certified premium steel turnings.	Formed steel micro-structure from certified premium steel turnings.						
Minimum den- sity measured by alcohol dis- placement	> 7.8g/cm ³	> 7.8g/cm ³						
Sizes	S70-S660	G25-G80						

Product	7	8	10	12	14	16	18	20	25	30	35	40	45	50	80	120	200
SN.660		AP		85% min	97% min												
SN.550			AP		85% min												
SN.460			AP	5% max		85% min	96% min										
SN.390				AP	5% max		85% min	96% min									
SN.330					AP	5% max		85% min	96% min								
SN.280						AP	5% max			96% min							
SN.230							AP	10% max		85% min	97% min						
SN.170								AP	10% max			97% min					
SN.110										AP	10% max		80% min	90% min			
GN.25						AP			70% min			80% min					
GN.40							AP					70% min		80% min			
GN.50									AP					65% min			
GN.80												AP				75% min	
Screen Number	7	8	10	12	14	16	18	20	25	30	35	40	45	50	80	120	200
Screen Size (mm)	2.80	2.36	2.00	1.70	1.40	1.18	1.00	0.85	0.71	0.60	0.50	0.425	0.355	0.30	0.180	0.125	0.075
Screen Size (inches)	0.111	0.0937	0.0787	0.0661	0.0555	0.0469	0.0394	0.0331	0.0278	0.0234	0.0197	0.0165	0.0139	0.0117	0.007	0.0049	0.0029

Cumulative Size Distribution (%)

*Document for informational purposes only. Not contractual. Contact your local representative for latest version of the technical data sheets.

